您好,欢迎访问北京启航家教网!请【登录】 【免费注册】 【找回密码】 付款方式 加盟

北京家教:2017-2018学年第二学期高三数学期中测试(理科)


来源:北京家教中心 日期:2018/8/2
注意:所有题目均在答题卷相应栏目中作答,否则不予计分。
一:选择题(60分)
1. 已知集合 , ,则 (      )
A.                            B.  
C.                  D. 
2. 命题“若 ,则 ”的逆否命题是(   )
    A、若 ≥ ,则 ≥ 或 ≤ B、若 ,则 
    C、若 或 ,则 D、若 ≥ 或 ≤ ,则 ≥ 
3. 已知向量 =(sinA, )与向量 =(3,sinA+ cosA)共线,其中A是△ABC的内角,则角A的大小为(  )
A.    B.    C.    D. 
4.若函数y=f(x)的定义域是[0,2],则函数g(x)= 的定义域是(  )
A.[0,1)∪(1,2] B.[0,1)∪(1,4] C.[0,1) D.(1,4]
5. 在△ABC中, 为角 的对边,若 ,则△ABC是(   )
A.锐角三角形      B. 钝角三角形       C. 等腰三角形       D. 等边三角形
6. 将函数y=sin(2x+φ)(φ>0)的图象沿x轴向左平移 个单位后,得到一个偶函数的
图象,则φ的最小值为(     )
A.      B.       C.         D. 
7. 设函数 是奇函数 的导函数, ,当 时, ,则使得 成立的 的取值范围是(      )
A.             B. 
C.            D. 
8.已知函数 在R上满足 ,则曲线 在点 处的切线方程是(      )
A.      B.       C.        D. 
9. 函数 的一个单调增区间是(    )
A. B. C. D. 
1O. 设 ,则对任意实数 是 的(    )
A.充分必要条件B充分不必要条件 C.必要不充分条件 D。既不充分也不必要条件
 11. 定义在R上的函数 的单调增区间为 ,若方程[来源:学科网] 恰有4个不同的实根,则实数a的值为(  )
A.       B.        C.1        D. -1
12. 已知 ,函数  ,若关于 的方程 有6个解,则 的取值范围为 (  )
A.    B.      C.          D. 
二:填空题(20分)
13.已知不共线向量 , ,| |=| |=| ﹣ |,则 + 与 的夹角是_________  
14. 在△ABC中,若 ,BC=3,  ,则AC=_________  
15. 设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.
16. 已知函数 满足 ,函数 关于点 对称, ,则 _________.
 
三:解答题
17.(10分) 已知函数 .
(I)求函数 的最小正周期和图象的对称轴方程.
(II)求函数 在区间 上的值域.
 
 
18(12分). 在 中,角A、B、C所对的边为a、b、c,已知 , .
(1)求 的值;
(2)若 ,D为 的中点,求CD的长.
 
 
 
 
 
 
19(12分) 在锐角 中,角 所对的边分别为 ,
已知 ,
(1)求 的值;
(2)若 , ,求 的值.
 
 
 
 
20.(12分)设 为实数,函数 .
(Ⅰ)求 的极值;
(Ⅱ)当 在什么范围内取值时,曲线 与 轴仅有一个交点.
 
 
 
21. (12分) 设函数 .
(Ⅰ)证明: 的导数 ;
(Ⅱ)若对所有 都有 ,求 的取值范围
 
 
 
 
22.(12分)已知函数 (a为实数)
(1)若 的图象在 处切线的斜率为 ,且不等式 在 上有解,求实数 的取值范围;
(2)因为 的图象与 轴交于两个不同的点 ,且0<x1<x2,求证: (其中 是 的导函数).
蚌埠二中2016-2017学年第一学期期中测试
高三数学理参考答案
一选择题(60分,每题5分)CDCCC     CAAAA        BD
二填空题(20分):13   .14. 1  15.   16. 2
三解答题:
17 (10分)(Ⅰ) 
 
 
 
 
 周期 .
由 ,得 ( ) 
 函数图象的对称轴方程为 ( ).
(Ⅱ) , ,
因为 在区间 上单调递增,在区间 上单调递减,
所以当 时, 取得最大值1.
又 ,
 当 时, 取得最小值 .
 函数 在 上的值域为 .
 
18. (12分)(1) 且 ,∴ .
  
  .
(2)由(1)可得  
由正弦定理得 ,即 ,解得 .
在 中, ,  ,
所以 . 
19(12分).(1)因为锐角△ABC中,A+B+C=, ,所以cosA= ,则
 
(2) ,则bc=3。
将a=2,cosA= ,c= 代入余弦定理: 中得 
解得b=  
 
20(12分).  令 ,当 变化时, 的变化情况如下表所示
 
 
 
 
 
 
 
 
 +
0 0 +
 
 
极大值
极小值
 
所以 的极大值= ,极小值 。
(2) ,所以当 时曲线 与 轴仅有一个交点。 
 
21(12分). 的导数 .
由于 ,故 .
(当且仅当 时,等号成立).
(Ⅱ)令 ,则
 ,
(ⅰ)若 ,当 时, ,
故 在 上为增函数,
所以, 时, ,即 .
(ⅱ)若 ,方程 的正根为 ,
此时,若 ,则 ,故 在该区间为减函数.
所以, 时, ,即 ,与题设 相矛盾.
综上,满足条件的 的取值范围是 .
22(12分)解:(Ⅰ)由  ,得切线的斜率 ,故 ,  
由 得 
∵不等式 在 上有解,所以   
令      则 ,
∵ ,故 时, .当 时, ;当 时, .故 在 处取得最大值 , 所以              
(Ⅱ)因为 的图象与 轴交于两个不同的点 
所以方程 的两个根为 ,则 ,两式相减得
 ,   
又 ,则
 
下证 (*),即证明 
  即证明 在 上恒成立    
因为 又 ,所以 
所以, 在 上是增函数,则 ,从而知 
故 ,即 成立   
 

编辑者:北京家教北京家教网)